

Ontario's Quest for Improved Asphalt Cement Specifications Extended BBR

Pamela Marks Head, Bituminous Section Ontario Ministry of Transportation ETG Binder Meeting

April 10, 2015

Improved MTO Laboratory Standards

1. Double-Edge-Notched Tension (DENT)

- First published in 2006
- Used for acceptance of all modified AC on MTO contracts since 2012
- Passed AASHTO SOM ballot in January 2015

2. Extended Bending Beam Rheometer (EBBR)

- First published in 2006
- Used for acceptance on selected contracts since 2009

3. Modified Pressure Aging Vessel (PAV)

• First published in 2012

Premature Pavement Cracking

Ontario research has shown that AC with identical grades can provide wide performance variation.

Hwy 41 North of Kaladar (1999)

Hwy 11 West of Cochrane (1999)

Hesp et al., Int. J. Pavement Eng., 2009

Pavement Performance

Validation with Real-World Contracts

MTO Regional Pavements (1993-2001)

Hesp et al., Int. J. Pavement Eng., 2009

Background on Extended BBR

Hesp et al., 2007 and Kriz, 2009

Background on Physical Hardening

Traxler and coworkers 1936 & 1937

- <u>Age hardening</u> (viscosity, 25°C).
- Effects from oxidation are small compared to age hardening.
- Gradual <u>isothermal sol-gel transition</u> with magnitude depending on crude source and processing.

Blokker & Van Hoorn 1959

• Coined the "<u>physical hardening</u>" term to describe (1) wax precipitation (fast) and (2) asphaltene/resins structuring (slow).

Struik 1978

- <u>Physical aging</u> (creep, stiffness, strength, time, temperature, etc).
- "It is <u>of little use</u> to measure creep if one ignores the <u>aging</u> effect."

Traxler's Asphalt Aging Index (1936)

Isothermal Physical Hardening

Pechenyi and Kuznetsov 1990

- <u>Avrami equation</u> for isothermal crystallization (phase transformation).
- Hardening is due to an imperfect ordering process.

Crystallized
fraction (CF)
$$C_t = 1 - \exp(-Zt^n) \qquad \begin{array}{c} \text{Avrami} \\ \text{exponent} \\ \text{Crystallization} \\ \text{rate constant} \end{array} \qquad Time$$
$$1 - C_t = \frac{V_t - V_{\infty}}{V_0 - V_{\infty}} \qquad \qquad \text{Crystallized fraction (CF)}$$

Pechenyi and Kuznetsov, *Khimiya I Tekhnologiya Topliv I Masel*, 1990 Materials Engineering and Research Office

Avrami Analysis of BBR Creep Data

655-1 PAV₂₀₋₂₅ @ -24°C

Creep Stiffness

Hesp et al., Unpublished, 2015

Near-Perfect Prediction of 72 h Grades

Sample	Predicted 72 h Grade Temperature*, °C	EBBR 72 h Grade Temperature, °C
655-1	-34.5	-34.4
655-2	-31.0	-30.4
655-3	-32.6	-32.6
655-4	-31.3	-30.7
655-5	-30.9	-30.9
655-6	-30.2	-30.3
655-7	-29.8	-29.7

* Predicted from 1, 3 and 24 hours measurements, using Avrami theory.

Various BBR Protocols

MTO Trial, Timmins, Ontario

2014 Automatic Road Analyzer Data

MTO Timmins Trial

Identical PG XX-34 Grades Total Cracking, m/km **Test Section**

BBR versus EBBR PAV Grading

BBR Grading

14 % Overall Accuracy (1 times out of 7) 0 % Accuracy in Predicting Failure (0 times out of 6)

EBBR Grading

100 % Overall Accuracy (7 times out of 7) 100 % Accuracy in Predicting Failure (6 out of 7 times)

Recovered Binder BBR versus EBBR Grading BBR Grading

43 % Overall Accuracy (3 times out of 7) 33 % Accuracy in Predicting Failure (2 times out of 6) 100 % Overall Accuracy (7 times out of 7) 100 % Accuracy in Predicting Failure (6 out of 7 times)

Extended BBR Validation

Canadian-SHRP Trial, Lamont, Alberta (1992-2003)

Gavin et al., Proc. CTAA, 2003

and

Ou Zhao and Hesp, *IJPE*, 2006

17

Mix Hardening or Softening?

Identical PG 64-34 Sections,

655-1 Sol-type AC: Low physical hardening, PI, R-value, oxidative hardening, S-controlled, and high CTOD. No cracking or moisture damage.

655-4 Gel-type AC: High physical hardening, PI, R-value, oxidative hardening, m-value controlled, and low CTOD. **Major cracking and moisture damage.**

Hesp et al., Proceedings CTAA, 2009

Cracking After 3 Years v.s. AC Initiative

(18 contracts)

Cracking After 2 Years v.s. AC Initiative

(11 Contracts)

Exceptional AC

Summary of Extended Bending Beam Rheometer Test Results MTO Standard Test Method LS-308

> OP: SH LAB ID: SAMPLE A TEST DATES: AASHTO M320 GRADE: PG 63-27 SUPPLIER: A

Conditioning	Conditioning	Average i	m-values	Average Cre	ep Stiffnesses	Tm	Ts	Limiting Temperature	Limiting Temperature	Limiting Grade	Grade Loss
Temperature	Period	Т _{нт}	TLT	T _{HT}	TLT			at m=0.300	at S=300	T _L (°C)	(°C)
		-12	-18	-12	-18			T _m -10(°C)	T ₈ -10(°C)		
T . 00%0	1 hour	0.404	0.332	133.3	318.7	-20.7	-17.6	-30.7	-27.6	-27.6	-0.4
T +20°C	24 hours	0.390	0.308	135.0	332.3	-18.6	-17.3	-28.6	-27.3	-27.3	-0.2
-8°C	72 hours	0.380	0.310	144.0	331.3	-18.8	-17.3	-28.8	-27.3	-27.3	-0.1
T . 40%C	1 hour	0.403	0.331	130.7	343.3	-20.6	-17.2	-30.6	-27.2	-27.2	0.0
1+10-0	24 hours	0.382	0.290	153.0	332.7	-17.3	-17.2	-27.3	-27.2	-27.2	0.0
-18°C	72 hours	0.381	0.281	152.3	348.7	-16.9	-16.9	-26.9	-26.9	-26.9	0.3

10, 11, 12
4, 5, 6
7, 8, 9
1, 2, 3

PG XX-YY: T + 20 =

T + 20 = -8 T + 10 = -18 Note: The conditioning temperatures were kept constant at -8C and -18. All stiffnesses and m-values are averages of three replicates.

Extended BBR Implementation

Climatic Zone	EBBR Grade, °C	Grade Loss, °C
-28	< -28	< 6.0
-34	< -34	< 6.0
-40	< -40	< 6.0

Lab Correlation Results for 2014					
	All	QA & Ref			
Laboratories Participating	13 -17	4-5			
Average EBBR LTLG Stdev (°C)	0.9	0.9			
Average Grade Loss (°C)	0.75	0.4			

Questions?

Pamela Marks, P. Eng.

Head, Bituminous Section Materials Engineering and Research Office Ministry of Transportation Ontario Tel: 416-235-3725 email: Pamela.Marks@ontario.ca